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1. INTRODUCTION 

The Rayleigh-Ritz variational principle provides a simple procedure for 
numerical calculation of approximations to the discrete eigenvalues and eigen- 
functions of a Hamiltonian operator H: The matrix representation B is formed in a 
subspace of the full Hilbert space defined by choice of a finite basis of square 
integrable (L2) functions and the matrix eigenvalues and eigenvectors computed. 
On the other hand, if we are interested in the continuous spectrum of H it is not 
immediately clear what information is contained in the discrete eigenvalues and 
normalizable eigenvectors of w, although the “stabilization” technique has made 
progress in this direction [l]. For example, in application of the standard variational 
principles of scattering theory one constructs (z - ir>-l as an approximation to 
(z - H)-I. Analysis of the problems caused by this representation, which does 
not preserve the analytic properties of the operator inverse was begun by Schwartz 
[2] and has been continued by Nesbet et al. [3] in a detailed analysis of the com- 
putational singularities of the Kohn and inverse Kohn principles. 

In this paper we take up the challenge given by Schwartz [2] of learning to 
directly interpret the eigenvalues and eigenvectors of R which correspond to those 
of H. We have not been able to solve the problem in any generality; however, in 
the simple case that 

(1.1) 

the radial s-wave kinetic energy, progress can be made and some idea of how to 
approach the general problem obtained. Specifically, we present a technique for 
calculation of matrix elements of (z - Ho)-l, the unperturbed s-wave Green’s 
function for the partial wave Lippmann-Schwinger equation, using finite L2 
expansions in such a way that the approximation is valid for all z in the cut com- 
plex energy plane, including in the z --+ E + ie limit. The direct motivation for 
considering this restricted problem was to gain an understanding of the process of 
extracting scattering information from approximations to the Fredholm deter- 
minant calculated entirely in a finite L2 basis [4]. Application of the present results 
to this problem are given elsewhere [S]. The principle results of the present work 
are that diagonalization of Ho in a basis of L2 functions is equivalent to a specific 
numerical quadrature approximation to the ordinary spectral representation of 
(z - Ho)-l, and that this equivalence allows construction of an approximation to 
((z - HO)-‘) valid for all z. That is, we develop a formalism which allows us to 
embed a finite matrix approximation ((z - B”)-l> in an approximation which 
preserves the analytic properties of the actual matrix element. 

In Section 2 we introduce, in a qualitative manner, the idea of an “equivalent 
quadrature” and show how this idea allows interpretation of an L2 approximation 



538 HELLER, REINHARDT, AND YAMANI 

to (z - HO)-’ in such a way as to obtain results in the z + E + ie limit. 
In Sections 3 and 4 two different L2 basis sets are considered and shown to give 
results which may be interpreted as numerical quadratures. In particular, it is 
shown that the results obtained by diagonalization of Ho in a basis of Laguerre- 
type functions is equivalent to a Chebyschev quadrature of the second kind. A 
discussion and a statement of a more general version of this problem are given in 
Section 5. 

2. THE METHOD OF EQUIVALENT QUADRATURE 

a. The Idea of an Equivalent Quadrature 

Consider the following approximation scheme. To obtain an approximate value 
of the matrix element 

where 
<f I Go(z) (2.1) 

Go(z) = (z - HO)--l, (2.2) 

HO=--ILdr2d 

2r2dr dr 

and ( f) is assumed to be a well-behaved square integrable function, we consider 

(2.4) 

where xt and Eio are the (normalized) eigenfunctions and eigenvalues of the matrix 
i70 which is the matrix representation of Ho taken in a set of N square integrable 
basis functions c&i>, and (x 1 f) = sr r”x(r)f(r> dr, it being assumed that all the 
functions are real. That is, we replace 

(f Kz - HOI-l If> (2.5) 

by 
<f Kz - i7”)-l If>, (2.6) 

FP being a matrix representation of Ho. The question now arises as to what extent 
such a replacement is possible, or even well defined; in particular how are we to 
interpret {f 1 (z - R”)-’ I f > in the limit as z -+ E + ic for real positive E in the 
continuous spectrum of Ho, where (z - H”)-l has a cut and (z - Firo)-l has simple 
poles ? 
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To answer this question we examine an alternate method for calculating the 
matrix element (fl(z - HO)--l ( f). The normal spectral representation of 
(z - Ho)-’ is given by [6] 

1 
s 

m~EIJwEI -= 
z - HO 0 z-E (2.7) 

where [ E) = (2/~/7r)r/~j,(kr) the j,(kr) being the usual spherical bessel function, 
and E = ka/2. In terms of this spectral representation we may write, 

where 
(fl E) = (2k/n)lle Jr rVrf(r)j,(kr). 

If we now introduce a numerical quadrature approximation of the type’ 

lrn &g(E) M LEmu QdE) = f wdEd, 
I=1 

(2.9) 

(2.10) 

wi and Ed being a set of quadrature weights and abscissas, we have 

(f~(Z-~O)-l~f)cwd= f wy)$yf) . 

i=l , 

If by some coincidence, or arrangement, the quadrature abscissas Ei of Eq. (2.11) 
are the same as the eigenvalues Ei” of R”, we would be tempted to equate 
the residues of Eqs. (2.4) and (2.11) with the result that 

I<fl XdEi”)>12 = IUl Ei”>12 wi - (2.12) 

Avoiding for the moment a detailed discussion of the validity of Eq. (2.12), which 
will certainly be an approximation in most cases (e.g., f(r) might extend beyond 
the range of the basis {&(r)}), we have the suggestion that the approximation of 
Eq. (2.4) is related, in some way, to the quadrature approximation of Eq. (2.1 I). 
That is, use of a L2 basis to define the matrix w” implies a quadrature approxima- 
tion to the spectral representation of Eq. (2.8). We call this quadrature the “equiv- 
alent quadrature” generated by the basis {I&}. In the following section we will give 
two explicit examples of “equivalent quadratures” generated by different choices 
of the L2 basis. Before doing this we show that the assumption of an equivalent 

1 The cutoff Emax is introduced purely to simplify the notation - an alternative, explored in 
Section 4, is to map [0, m] onto the finite interval [--1, +l]. 
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quadrature will allow us to embed the L” approximation to (f l(z - H”)-l / f) in 
an approximation which is valid in the z + E + k limit, providing only that (f 1 E) 
is a smooth function of E. 

b. A Dispersion Correction Formula 

The approximation 

(j-1 (z _ HO)-1 (f)quad = ; +'f;"r)F if) 
i=l I 

apparently suffers from the same problem that Eq. (2.4) does; in replacing the cut 
by a row of poles we have lost the ability to take the z -+ E + ie limit. However, in 
the case of a numerical quadrature approximation to (z - HO)--’ this is easily 
remedied. In the z -+ E + ie limit we have 

I 
“UlJwIf)=p “(flE)(Elf)_in(~f,E),B 

o E, + ie - E s E. - E 0 * (2.14) 
0 

The principal value integration may be performed numerically with no error due to 
the singularity [7] as 

PI 
“<flE><mf>& 

0 E, - E 

WP s 
Em""dE<flEXElf) 

0 E, - E 

s acrnax W-l WI2 - Kfl EoY) = 
0 E, - E dE + M-l -%>I2 iEm*‘& E, - E 

- gl ai;f~-“2 + I(f1 Eo)12 !joBm=-* - = E, - E 

provided there is a C such that the Lipschitz condition 

IlUl WI2 - Kfl EON2 I < C I E - E,, I 
holds. In this case the “correction” term 

(2.16) 

allows computation of approximations to 

P f 
m IQ-I EN2 
o Eo-E dE 
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over a continuous range of E” using a fixed set of quadrature weights and abscissas 
(oi , E,) provided that <f 1 E,) is interpolable from the discrete set ((j-1 Ei)}i=l,n . 
Assuming that this is the case we have 

(f I (E + k - H”)-l I f> 

(2.17) 
which is valid in a numerical quadrature sense for all Eo(EmaX. We have thus 
embedded the numerical approximation of Eq. (2.11) which appeared to be valid 
only for complex z, into an approximation which allows direct construction of 
the E + ie limit. Using the “equivalent quadrature” idea introduced in Section 2(a) 
we now do the same for the L2 approximation of Eq. (2.4). 

Assuming that the L2 diagonalization of Ho gives a set of abscissas Et and that, 
in some sense, 

Kfl xA2 = Kfl 40>12 Gq 

as suggested by Eq. (2.12), we interpret 

as a quadrature approximation to (f l(z - H”)-l If) with “equivalent quadrature” 
weights wFQ and abscissas E,O. Now using Eq. (2.17) in the z -+ E + it- limit we 
have 

<fl Go + ic - HO1-l If> (2.18) 

where we obtain (f ( E,) from the results of our L2 calculation by use of Eq. (2.12): 

Kf I &?I2 = Kf I x~N~/~~~ (2.19) 

followed by interpolation to obtain I(f ( Eo)12. Note that the construction of 
I( f 1 Et) [ 2 requires explicit knowledge of the “equivalent quadrature” weights w:a. 

In summary, given an L2 approximation to (z - HO)-l if we assume the existence 
of a set of “equivalent quadrature” weights, and if these weights are explicitly 
known, we can embed (f l(z - R”)-l I f) into an approximation which retains the 
actual cut structure of the matrix element. We now construct some “equivalent 
quadratures.” 
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3. AN “EQUIVALENT QUADRATURE" GENERATED BY Box QUANTIZATION 

Consider the set of orthogonal L2 functions which are eigenfunctions of 

HO=-!lld 2d 
2&P z 

in a spherical box of radius I?. These functions satisfy the boundary conditions 

and are, 

where 

If we require 

the c, are determined as 

VW0 = km = 0 (3.1) 

&3r> = cn.ioW) (3.2a) 

k, = m/R; E,,O = kaa/2. (3.2b) 

r R r”d&dr) &n(r) = &I, (3.2~) 
JO 

C7I = ((2/R) kn2)1/2. (3.3) 

Using this L2 basis we have 

where 

<f I hJbox = lRrp drf(r) (~)“‘jo(k.r) 

(3.4) 

(3.5) 

as the L2 approximation to 

(fl(z - HO1-l If>. 

To see what “equivalent quadrature” is implicit in the approximation of Eq. (3.4) 
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we consider a numerical approximation with as yet undetermined weights wTq to 
the exact spectral representation 

s 
Em= dE <.f I EXE I f > d” WI G>l2 

0 z-E z - Ei 

where now 
1 Ei) = (2k,/n)l12jo(kir) (3.7) 

and we require that the numerical quadrature have the same abscissas as Eq. (3.4); 
that is, E,, = k,2/2. Equating the residues of Eq. (3.7) with those of Eq. (3.4) gives 

(2ki2/R) IV I jo(kgr)>box I2 = ~fq(2ki/~) Kf I ioUvD12, (3.8) 

which is exact iff(r) = 0 for r > R, and certainly becomes exact as R -+ co in the 
more general case. Assuming that it is at least a reasonable approximation to 
assume that 

U I jo(k,rDbox = <f I j,(k,r)), 

we conclude 

uzq = ?rk,,/R = mr2JR2, (3.9) 

which are the weights for the equivalent quadrature generated by the box- 
normalized L2 basis. 

We can easily check that this set of weights does define a quadrature by taking 

(3.1Oa) 

and then performing the first moment of E as 

= E&/2, (3.1Ob) 

which is, indeed, the correct result. Higher moments contain errors, which means 
that the quadrature is essentially trapezoidal. 

The essence of the equivalent quadrature method now becomes clear; over a 
restricted region of space, in this case 0 < r < R, I xi> s I Ei), to within a 
normalization factor. The difference between the unit normalization of the 
La function 1 xi) and the continuum normalization of I Es) being related to the 
weight for the “equivalent quadrature.” 
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4. LAGUERRE FUNCTIONS AND CHEBYSCHEV QUADRATURE 

a. Diagonalization of Ho in a Laguerre Basis 

The s-wave kinetic energy can be diagonalized in the (nonorthogonal) basis of 
Laguerre type functions 

ecar12 aL,l(ar), n = 0 ,.,., N - I, (4.1) 

following the technique outlined by Schwartz [2]. The resulting eigenvalues are 

(N) E(N) _ k,2 - g l + x, 
9% 2 8 1 - xLNN) (4.2a) 

xkN’ = cos((n + l)r/(N + 1)) n = 0, 1, 2 ,..., N - 1, 

and the normalized, square integrable, eigenfunctions are [8] 

N-l 

(4.2b) 

#gtN) = AgeaT" C ___ 
n=O (n -k 1) 

Un(xIN’) L,l(w), n = O,..., N - 1, (4.3a) 

where 

01(1 + XfN)) 1’2 
Ad = ( N + ; ) UNel;x;N’) (4.3b) 

and U,(x) is a Chebyschev polynomial of the second kind (the UN(x) are 
orthogonal on [- 1, +1] with the weight function (1 - x2)li2). 

We now note the rather striking fact that under the mapping 

d 1+x 
E+-‘d.l-x Or 

E - 038 
x = E + cz2/8 (4.4) 

the transformed eigenvalues 

%I (N) = cos((n + l)r/(N + l)), n = 0, l,..., N - 1, (4.5a) 

are the roots of the N-th order Chebyschev polynomials of the second kind [9, IO]. 
This immediately suggests that calculation of (f j(z - go)-, I f) where no is the 
representation of Ho in the basis of Eq. (4.1) may be interpreted, with an appro- 
priate change of variables, as a Chebyschev quadrature of the second kind, and 
that the “equivalent quadrature” weights are the Chebyschev weights [I l] 

c&‘(N) = e sin* ( ‘“N”+‘p ) (4Sb) 
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appropriate to a Chebyschev quadrature of the second kind. The proof of this 
conjecture is given in the following subsection. In what follows we will write 
x. zzz X!N) 2 z 3 wi Ch = o:‘(N), it being understood that we are referring to an N-th 
order quadrature. 

b. A Chebyschev Equivalent Quadrature 

Consider the approximation of 

(4.6a) 

(4.6b) 

where the Ei are given by Eq. (4.2a). We show that if f(r) is representable in the 
form 

where the ai are arbitrary coefficients, that the sum of Eq. (4.6b) is identical to a 
Chebyshev approximation to the integral of Eq. (4.6a); in the case thatf(r) is not 
given exactly by a finite Laguerre expansion we will see that Eq. (4.6b) represents 
an approximate Chebyschev quadrature approximation to the integral of Eq. (4.6a). 

To demonstrate these results we first rewrite Eq. (4.6) as 

s m & t(f t WI2 = 
Z-E (4.7) 

0 

where 

E(x) = ((1 + x)/(1 - X)) G/8. (4.4) 

We now approximate the integral of Eq. (4.7) by a quadrature with as yet un- 
specified weights, oFq, but choosing the xi to be given by Eq. (4.5a), that is cor- 
responding to the transformed eigenvalues of R” as defined in Eq. (4.4). Thus we 
take 

012 +l 
s 

dx 1 
4 Kfl 4.4)12 wl (1 - x)” z - E(x) 

012 N-l 

c 
maq 1 

w 4 i=. (1 _” xi)” (2 - E(xi)) Icf’ E(xi))12 (4.8) 
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Equating residues of Eqs. (4.6b) and (4.8) gives: 

(4.9) 

Using the representation [12] 

(+)I” sin(k(x)r) = 2 (+)l” ( 4$f(:)ae ) e-~~/2(w) ioj+-f U,(x) h’(ar), 
(4.10) 

where x is given by Eq. 4.4, we see that it is reasonable to equate the matrix 
elements 

and 

(4.11a) 

(4.11b) 

which is exact if 

N-l 

f(r) = ,C, a&l(w) e-ai/2. 

as 

s 
4) d(a.r)(ar) e-mrLnl(ar) &l(w) = 0, m # n, 

0 

and becomes exact as N ---* co in the general case provided that the L2 function f(r) 
is not pathological. 

Assuming the validity of equating the matrix elements of Eqs. (4.1 la and b), we 
have immediately 

o”, = Kfl XY>12/(, 1 
_ x,)* ; Kfl &)I2 

I( a(1 + XJ l/2 
) 

1 
I 
2 1 

N+l UN-l(%) k(&) =: 
d 1 
T (1 - x,)2 

(4.13) 
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Using the fact that [9] 

UN-,(cos $n)2 = (sin N @N++‘)lrr /sin @N++‘);r )I = 1 (4.14) 

x, = cos *, = cos((n + 1) ?T/(N + 1)) n = 0, l)...) N - 1, 

Eq. 4.13 may be simplified using standard trigonometric identities, giving 

W = 2!L sin2 % ( 
(n+l)r 1 

N+l N-t1 ) (1 - x,31/2 

which is the appropriate Chebyschev weight for the Chebyschev quadrature of the 
second kind [l 11: 

where 

I +’ (1 - x%)‘/~ g(x) dx = y w:“g(x,J 
-1 TWO 

(4.16a) 

Ch 
% = & sinZ ( 

(n + l)rr 

N+l ) (4.16b) 

and 

x, = cos((n + l)?r/(N + 1)) (4.16~) 

which is exact if g(x) is a polynomial degree 2N - 1 or less. Equations (4.16a and b) 
make the origin of the (1 - x,~)--~~~ factor in Eq. 4.15 clear. 

We have thus shown explicitly that the differences in normalization of 1 &‘s> 
and 1 E,,) implies that the L2 approximation to (f I (x - H”)-l( f ) is a Chebyschev 
quadrature if f is of the form of Eq. 4.12, and an approximation to such a 
Chebyschev quadrature to the extent that the matrix element of Eq. (4.11 b) only 
approximates that of Eq. (4.1 la). This identification implies the Chebyschev 
interpolation scheme discussed in the following subsection. 

c. A Chebyschev interpolation 

Once it is realized that diagonalization of Ho in a Laguerre function basis is 
equivalent to a Chebyschev quadrature with weight 

cozh = vr/(N + 1) sin2((n + l)n/(N + 1)) 

and abscissa 

xiN) = cos((n + l)rr/(N + 1)) 
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we can apply the technique of Section 2b to embed the approximation of Eq. (4.6b) 
into a form which allows an interpolative construction of the z ---f E + ie limit. 
The appropriate formula is 

where 

y (f I Xt;8BxX?g I f> 01’ 0-l EoWo I f > 

7Z=O Eo - EC4 + -;i- (1 - X0)2 (1 - x02)1/2 

X 

- iv Kfl Eo)12, (4.17) 

x0 = (Eo - ~2/8)/@o + a2/8) 

and the I(f 1 Eo)j2 are calculated by interpolating the l(S j E(x,))/~ which are 
obtained as 

u-l %D12 = 0 - Xi2Yh(l - Xi)” $ ,(f, xy3g)/2* 

2 
(4.18) 

Application of Eqs. (4.17) and (4.18) to extraction of elastic scattering information 
from L2 approximations to the partial wave Fredholm determinant is considered 
in [5]. 

5. DISCUSSION 

We have shown, for two specific cases, that calculation with an L2 discretized 
matrix representation of an operator with a continuous spectrum is equivalent to 
a numerical quadrature approximation to the spectral representation of the opera- 
tor. This realization permits the embedding of the discrete representation into an 
approximation which retains the correct spectral properties of the operator being 
considered. In this sense the problem, posed by Schwartz [2], of learning to 
squarely face the singularities of an L2 discretized operator inverse has been solved 
for the simplest case, namely H = Ho. The work presented here may be generalized 
to higher partial waves and to the use of more general L2 basis sets related to the 
classical orthogonal polynomials [13]. However, we have not been able to make 
satisfactory progress in finding the equivalent quadratures in two interesting more 
general cases. 

(1) If HO is formed in a basis not simply related to the classical orthogonal 
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polynomials, e.g., in the basis of Slater-type functions, rnie-rlr with several 
different ,$( , HO probably cannot be diagonalized analytically and the com- 
parison of Eqs. (4.1 la and b) is not directly possible. 
(2) Even using well understood basis functions the potential scattering 
Hamiltonian H = Ho + V will probably not admit analytic diagonalization 
unless it is soluble anyway, and thus of limited interest, except in defining a 
distorted wave Green’s function. 

In each of these cases one could proceed numerically and construct the eigen- 
functions of H and B, normalize them according to 

(E / E’) = 6(E - E’) and (Ei 1 Ei> = aij , 

respectively, and determine the weights from direct comparison of the functions 
over a limited region of coordinate space, in analogy with the methods of Section 3, 
or by comparison of coordinate space generalized moments within the subspace 
defined by the basis set (as done in Section 4), and then construct the “equivalent 
quadrature” weights directly in the spirit of Eq. (3.8) or (4.9). At first glance one 
might expect that his sort of procedure is the best one can hope for, as it appears to 
be the natural generalization of the method used in Sections 3 and 4, appropriate 
in those cases where analytic results are not available. 

It is possible, however, to approach the problem in an alternate way, without 
explicit comparison of the eigenfunctions of H and H. Equivalent quadrature 
weights may be extracted by direct examination of the pole density of 
(f /(z - m-l 1 f) defining weights by a variety of pole spacing averaging techniques 
[14]. This works well for large basis sets in the case where the poles are roughly 
evenly spaced, but is not as accurate as the Chebyschev results. It may also prove 
possible to extract information directly from the energy moments [15] of 
(f l(z - R)-l If), but at present this implicitly requires “equivalent quadrature” 
weights obtained by a pole spacing averaging technique. 
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